Рисунке изображен график производной функции найти точку x0


Закрыть ... [X]

Задания, в которых на рисунке изображен график производной функции y=f ‘(x), и нужно определить точки экстремума и промежутки монотонности функции y=f(x), решаются очень просто. 

Достаточно помнить, что

1) функция y=f(x) возрастает на промежутках, где производная y=f ‘(x)>0;

2) функция y=f(x) убывает на промежутках, где производная y=f ‘(x)<0;

3) функция y=f(x) имеет критические точки, где производная f ‘(x)=0 или не существует (но это верно только для внутренних точек области определения, то есть точки на концах области определения не рассматриваем);

4) функция y=f(x) имеет точки экстремума там, где производная y =f ‘(x) меняет свой знак.

В частности, функция y=f(x) имеет точки максимума там, где производная меняет знак с плюса на минус;

функция y=f(x) имеет точки минимума там, где производная меняет знак с с минуса на плюс.

Примеры.

На рисунке изображен график производной функции. С помощью графика найти промежутки монотонности функции, критические точки, критические точки и точки экстремума.

рис.1. По графику производной исследовать функцию.

 

 

 

 

 

 

 

Функция y=f(x) возрастает на промежутках (x1;x3) и (x4;x5) (то есть там, где производная y=f ‘(x) положительна, а значит, ее график расположен выше оси оx). Точку x2  не исключаем из промежутка возрастания — производная в этой точке равна нулю, но знак не меняет.

Функция y=f(x) убывает на промежутке (x3;x4) (то есть там, где производная y=f ‘(x) отрицательна, а значит, ее график расположен ниже оси оx).

Критические точки: x2, x3, x4. В этих точках производная обращается в нуль (а график производной, соответственно, пересекает ось ox).

x=x3 — точка максимума функции y=f(x), поскольку производная y=f ‘(x) в этой точке меняет знак с плюса на минус (график производной пересекает ox в направлении сверху вниз).

x=x4 — точка минимума функции y=f(x), так как производная y=f ‘(x) в этой точке меняет знак с минуса на плюс (график производной пересекает ox в направлении снизу вверх).

Точки экстремума: x3 и x4. В них производная не только обращается в нуль, но и меняет свой знак. Точка x=x2 — критическая, но точкой экстремума не является поскольку нет смены знака производной. То есть точки экстремума на графике производной — это те точки в которых график не касается, а пересекает ось ox.

График производной

рис.2. По графику производной исследовать функцию

 

 

 

 

 

 

 

 

 

 

Функция y=f(x) возрастает на промежутках (x2;x3) и (x4;x5).

Функция y=f(x) убывает на промежутках (x1;x2) и (x3;x4).

Критические точки: x2, x3, x4.

Точка максимума — x=x3.

Точки минимума — x=x2 и x=x4.

С помощью графика производной y=f ‘(x)также можно сравнивать значения функции y=f(x). Такие задания рассмотрим позже.


Источник: http://www.uznateshe.ru/grafik-proizvodnoy-funktsii/


Поделись с друзьями



Рекомендуем посмотреть ещё:



Похожие новости


Прикол с дисководам
Рисунок для космоса простой
Три четверти как рисовать
Рисунок на тему мой окружающий мир
Раскраски мерседес грузовик


Рисунке изображен график производной функции найти точку x0
Рисунке изображен график производной функции найти точку x0


График производной функции
Касательная к графику функции в



ШОКИРУЮЩИЕ НОВОСТИ